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We investigate numerically and analytically the effects of conservation of total translational and angular
momentum on the distribution of kinetic energy among particles in microcanonical particle systems with small
number of degrees of freedom, specifically microclusters. Molecular dynamics simulations of microclusters
with constant total energy and momenta, using Lennard-Jones, Morse, and Coulomb plus Born-Mayer-type
potentials, show that the distribution of kinetic energy among particles can be inhomogeneous and depend on
particle mass and position even in thermal equilibrium. Statistical analysis using a microcanonical measure
taking into account of the additional conserved quantities gives theoretical expressions for kinetic energy as a
function of the mass and position of a particle with only O�1 /N2� deviation from the Maxwell-Boltzmann
distribution. These expressions fit numerical results well. Finally, we propose an intuitive interpretation for the
inhomogeneity of the kinetic energy distributions.
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I. INTRODUCTION

Theoretical approaches based on statistical mechanics are
believed to work well in the thermodynamic limit in which
the number of particles N composing the system is infinitely
large. However, in systems consisting of small numbers of
atoms, such as microclusters, molecules, proteins, and other
finite size systems, the traditional view of statistical physics
might be significantly modified.

Indeed, several interesting phenomena peculiar to small
systems have been reported experimentally and theoretically.
For example, in microclusters, reduced melting temperatures
�1�, anomalous structural fluctuation �of Au cluster� �2–6�,
negative heat capacity �7–9�, rapid alloying phenomenon
�10–14�, and coexistence of liquid and solid phases �15–17�
have been reported, and these phenomena are considered to
be manifestations of small number effects.

All physical systems are in contact with an environment
which can work as a heat bath. Therefore, all physical sys-
tems in thermal equilibrium should be considered to form
canonical ensembles. However, there are many systems
which can be treated as isolated systems rather than as sys-
tems in close contact with thermal environments. In particu-
lar, systems consisting of relatively small number of atoms
can be often considered as isolated systems. Indeed, many
theoretical studies for dynamical and static characteristics of
such systems have been done by using Newton’s equation of
motion for small number of atoms supposing that the system
is isolated �the so-called microcanonical simulation�
�13–15,18,19�. Unimolecular reactions in gas phase, which
have been investigated in fundamental studies of chemical
reactions, also have been treated as isolated systems in the-
oretical and numerical investigations.

If the isolated system is ergodic it forms a microcanonical
ensemble with conserved total energy. Under general condi-
tions, the isolated systems conserve total translational and

angular momentum in addition to the total energy. This type
of systems is also called EJ ensembles, and some researchers
have investigated them from the viewpoint of Monte Carlo
sampling of EJ ensemble phase space and developed tech-
niques for such sampling �20–22�.

In bulk material systems consisting of a huge number of
atoms, the effect of the additional conserved quantities can
be ignored because of the largeness of the number of degrees
of freedom. However, the effect of additional conserved
quantities might be significant in systems with small number
of degrees of freedom. The effect of additional conserved
quantities is also an important problem from the viewpoint of
dynamical theory of Hamiltonian systems with multiple de-
grees of freedom.

In this paper, we study the effect of translational and an-
gular momentum conservation on energy equipartition in mi-
crocanonical equilibrium in small clusters. This problem is
representative of the general effect of conserved quantities
on energy equipartition in microcanonical equilibrium. For
this purpose, we introduce a theoretical model for microclus-
ters of atoms �or nanoparticles� which captures the essential
features of this effect. First, in a molecular dynamics �MD�
simulation supposing the conservation of total translational
and angular momentum, it is shown that the atoms compos-
ing a cluster can have significantly different average kinetic
energy. Next, taking the conservation of total translational
and angular momentum into account and based on microca-
nonical ensemble, we derive general formula for the arbitrary
order moment of kinetic energy possessed by each individual
atom and prove that the velocity distribution of each indi-
vidual atom obeys the Maxwell-Boltzmann �MB� distribu-
tion with its own temperature. These are the main results of
the present paper. Finally, the numerical and analytical re-
sults are compared and an excellent agreement between them
is confirmed.

The main results mentioned above were reported in our
preliminary letter �23�, however detailed investigations were
not presented there because of the limit of pages. The aim of
the present paper is to provide the full details of the numeri-
cal and analytical investigations.*ni-yama@ike-dyn.ritsumei.ac.jp
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The organization of the present paper is as follows: in
Sec. II, we introduce a theoretical model for microclusters of
atoms and show that kinetic energy of each atom becomes
inhomogeneous with numerical experiments in typical clus-
ters which have Lennard-Jones, Morse, or Coulomb plus
Born-Mayer-type potentials even if the systems are in equi-
librium. For this, the kinetic energies distributed to each
atom and their distributions are calculated with MD. A rela-
tion between the kinetic energy distributed to each atom and
the atom’s mass or the distance from the center of mass is
also investigated. From the relation, we show the trend that
an atom which is heavier or further from the center of mass
possesses less kinetic energy.

In Sec. III, the average kinetic energy of an atom is de-
scribed as a function of the position and mass of the atom
from analytical estimation of the energy using a microca-
nonical measure. The expression for higher-order moments
of the kinetic energy of an atom and its distribution function
are also derived. And we show that the distribution function
fits a MB distribution whose parameter is the local tempera-
ture corresponding to the atom.

Finally, we compare numerical results of Sec. II and the
theoretical estimation of Sec. III and argue that the inhomo-
geneity of local temperature is caused by conservation of the
total translational and angular momentum of the cluster in
Sec. IV.

II. NUMERICAL EXPERIMENTS

In this section we present results of MD experiments on
the distribution of kinetic energy in small clusters and char-
acterization in terms of local temperature.

First, let us consider the temperature of an isolated system
which consists of N particles in the three-dimensional space.
If we suppose that the system is ergodic and is described by
a microcanonical ensemble, the statistics of any arbitrarily
chosen subsystem should obey a canonical ensemble in the
thermodynamic limit. Since any particle � forms a sub-
system, the distribution of its kinetic energy �� should rigor-
ously obey the MB distribution function with the single com-
mon temperature T,

����� � ���e−��/kBT. �1�

Here T is the temperature defined for the whole system on
the basis of Boltzmann’s entropy S�E�,

1

T
=

dS�E�
dE

. �2�

This is a textbook matter of statistical mechanics. This result,
however, holds in the limit of N�1. For a small isolated
system like a microcluster, the above argument might not
hold.

As we shall show below, the velocity distribution is well
fitted by the Maxwell-Boltzmann distribution,

����� � ���e−��/kBT�
MB

. �3�

However, if the system is small enough, the effective tem-
perature T�

MB in general differs depending on the position and

mass of the atom. We call T�
MB the local MB temperature. A

more easily computable temperaturelike parameter of the in-
dividual atom is the effective temperature of the kinetic en-
ergy distributed to the atom �, which we call local kinetic
temperature,

T�
� =

2����
3kB

. �4�

In the following, we generically call these temperatures T�
MB

and T�
� as local temperatures. These local temperatures are

introduced in analogy with the kinetic temperature of the
cluster which is widely used in MD or Monte Carlo simula-
tions �for example, see Refs. �19,24�� defined by

TK =
2�K�

�3N − 6�kB
, �5�

where �K� is average total kinetic energy. Later theoretical
consideration will lead us to a justification of this definition
of kinetic temperature as the temperature based on the Bolt-
zmann entropy �see Sec. III E�. The above definitions of tem-
perature were also studied by Jellinek and Goldberg �25� or
Salian �26�.

The numerical evidence for inhomogeneity of the local
temperature in microclusters will be fully discussed in Sec.
II C. The local temperature distribution is homogeneous if
total translational and angular momentum are not conserved
due to application of an asymmetric external perturbation.
Thus we conclude that the inhomogeneity is caused by the
additional conserved quantities.

We first discuss details of the setting of numerical experi-
ments.

A. Models

Many types of empirical atomic interaction potentials
have been used for MD simulation of various materials, in-
cluding microclusters. The type of such a potential usually
affects the dynamical or statistical properties of the system.
In order to investigate universal properties of microclusters,
we examine three well-known two body model potentials,
namely, the Lennard-Jones �LJ� potential, the Morse poten-
tial, and the Coulomb plus Born-Mayer �C+BM� potential.

The above three potentials are well known as simple mod-
els of rare gas, metals, and alkali halide crystals, respec-
tively, and they represent various types of atomic interaction
of short, medium, and Coulomb long range forces. The clus-
ters which form with these potentials take various structures,
e.g., icosahedral or cubic �rocksalt� structure �27,28�. In ad-
dition, alkali halide clusters have another feature that the
clusters are composed of atoms with different masses. As
shown in later sections, this feature plays a particularly im-
portant role.

For the LJ potential �29� given by

vkl
LJ�rij� = 4�kl�	�kl

rij

12

− 	�kl

rij

6� , �6�

the argon parameters �kl=0.0104 eV and �kl=3.40 Å were
used, where rij is the distance between ith and jth atoms. For
the Morse potential �30�,
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vkl
M�rij� = �kl�e−2��rij−�� − 2e−��rij−��
 , �7�

the copper parameters �kl=0.3429, �=1.358 Å−1, and �
=2.866 Å were adopted �31�. And for C+BM potential �32�,

vkl
CBM�rij� =

qkql

rij
+ Akl exp	Rk + Rl − rij

�kl

 , �8�

where qi is the charge on ion i, Aij and �kl are parameters
which we chose to be Tosi-Fumi parameters �33,34� for so-
dium iodine �NaI�. We further note that the mass of I− ion is
5.5 times as heavy as that of Na+ ion. Because of the above
choice of parameters, in this paper we refer to a cluster with
LJ, Morse, or C+BM potential as Ar cluster, Cu cluster, and
NaI cluster, respectively, and represent them as �Ar�N, �Cu�N,
and �NaI�n, respectively, where N is the number of atoms and
n is the number of cation-anion pairs.

Employing the model potentials defined above, the model
Hamiltonian of a cluster is described as

H�p,q� = �
i=1

N
pi

2

2mi
+ �

i�j

N

vkl�rij� + U�q� , �9�

where pi and qi are ith atom’s momentum and coordinate
vector and mi is the mass of the ith atom, respectively. The
extra potential U�q� represents an external force breaking
translational and rotational symmetries, which is applied in
order to investigate the role of conserved quantities in the
inhomogeneous temperature distribution. This potential is
only used in Sec. II E; in other sections the external potential
is omitted so translational and rotational symmetries are
maintained.

B. Initial configurations

In this paper, we consider clusters with close-packed con-
figurations as initial configurations and relatively low tem-
peratures such that atoms do not change their original sites.
This allows an evaluation of local temperature and its depen-
dence on position. Moreover, three moments of inertia
around principal axes of the cluster are nearly equal. Such a
symmetry allows us to interpret the numerical results in later
sections more easily.

We choose a cubic rocksalt-type structure as the initial
configuration of �NaI�n clusters and icosahedral structures for
�Ar�N and �Cu�N. These initial configurations, icosahedral
and cubic structure, are shown in Fig. 1 �the center of the
�NaI�n is occupied by a Na+ atom�.

In case of rocksalt �NaI�n clusters the directions of prin-
cipal axes of the cluster are �100�, �010�, and �001� direc-
tions and equivalent if we neglect thermal atomic vibration.
For �Cu�N or �Ar�N, icosahedral structure of the clusters has
three different moments of inertia, but the differences are no
more than 10%, so we can regard Ix� Iy � Iz.

C. Numerical method to evaluate local temperature

With the initial configurations of isolated clusters pre-
sented above we executed MD simulation by solving Hamil-
ton’s equation of motion and evaluated kinetic energies of
each atom. Details of the procedure for the evaluation are
described below.

To prepare stable initial configurations, we applied the
steepest decent algorithm, with which the system reaches a
local minimum on its potential energy surface, which corre-
sponds to a stable structure. Without any external forces
breaking translational and rotational symmetries, all the
components of total translational and angular momentum are
conserved. To avoid complications due to the presence of
these conserved quantities, we executed the MD simulation
under the null total translational and angular momentum con-
dition. To prepare this null momenta initial condition, we
slightly distorted the stable structure by moving each atom at
random from its equilibrium position and set initial velocity
of each atom to zero. This initial configuration distorted from
the equilibrium position causes internal vibrational motion,
but the initial total translational and angular momentum are
zero at the initial time. So the momenta vanish throughout
the MD simulation because of the conservation of the total
translational and angular momentum.

To control the total kinetic energy of the system, we em-
ploy the velocity scaling method with which the total kinetic
energy is increased or decreased in order to achieve the de-
sired value. �The velocity scaling method should be done
under the constraint of total translational and angular mo-
mentum conservation.� After achieving the desired total ki-
netic energy, the cluster is evolved according to Hamilton’s
equation of motion for some period �typically 10 ns� until the
system relaxes to thermal equilibrium. Eigenfrequencies of
clusters in our study are approximately 1	10−1−1 ps, so
the atoms can vibrate about 104–105 times during this relax-
ation time. Thus we can consider the time is long enough for
the system to reach equilibrium.

Then various quantities such as kinetic energy �� of each
atom �� specifies each atom�, its distance from the center of
the cluster r�, and so on are sampled at appropriate interval

�. Using all these quantities, we compute the time averaged
kinetic energy ���� of each atom, its distribution �����, the
averaged distances from the center of the cluster �r��, and the
average moments of inertia �Ix�, �Iy�, and �Iz�. To solve
Hamilton’s equation of motion, we employed the velocity
form of the Verlet algorithm, where the time steps used were
typically 10 fs for �Ar�N and �NaI�n clusters and 1 fs for
�Cu�N cluster. �Numerical accuracy is much improved if one
employs a higher-order symplectic integrator; the Verlet al-
gorithm is equivalent to the second-order symplectic integra-
tor.�

(a) (b)

FIG. 1. Initial configurations of the clusters. �a� �Ar�55 and
�Cu�55 �icosahedral structure�. �b� �NaI�13I− �3	3	3 cubic struc-
ture, N=27�. Small sphere: Na+; large sphere: I−.
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D. Local temperature with vanishing total translation
and angular momentum

In this section, we evaluate local temperature T�
MB of each

atom in the cluster models introduced in Sec. II A and inves-
tigate the relation between the local temperature and position
or mass of the atom based on the MD simulation whose
procedure is also described in Sec. II C. It is note that we
chose the temperature of clusters to be lower than melting
temperature, so no melting, much less evaporation, was ob-
served during any of the numerical experiments described
below.

First, we examined the isolated �NaI�13I
− cluster whose

total translational and angular momentum are conserved. In
this simulation, the total energy was −3.122 eV /atom which
corresponds to TK�300 K, where the total simulation time
and the sampling interval were taken as �=100 ns and 
�
=100 fs, respectively. From the numerical experiment, the
average moment of inertia of the cluster was calculated: �I�
�2.89	104 u Å2.

In Fig. 2, the distributions of kinetic energy are depicted
and compared with the Maxwell-Boltzmann distribution
function fitted by the least-squares method. The solid circles
in the figure represent the distribution of the kinetic energy
of the Na+ atom at the center of the cluster and the white
circles represent the energy of the I− atom at a vertex of the
cluster. The figure shows that these kinetic energy distribu-
tions fit the MB distribution very well, but the energy distri-
butions at the two sites differ significantly. This means the

temperatures T�
MB determined by fitting to the Maxwell-

Boltzmann distribution at the two sites differ significantly,
although the Na+ and I− atoms belong to the same system.

The local MB temperatures T�
MB, the local kinetic tem-

peratures T�
�, and the average kinetic energy ���� of indi-

vidual atoms are shown in Table I for four types of atoms
taken from the cluster: the first kind of atom is the Na+ atom
at the center of the cluster, the second and third are a nearest
neighbor �I− atom, �r��=3.3 Å� and a second nearest neigh-
bor �Na+ atom, �r��=4.4 Å� from the center, respectively,
and the fourth kind of atom is one of the atoms on a vertex of
the cluster �I− atoms, �r��=5.3 Å�.

Because of the symmetrical structure, these four types of
atoms represent all the atoms in the cluster. From the Table I,
both temperatures, T�

MB and T�
�, agree quite well within 1%.

This agreement provides another evidence that the kinetic
energy distributions of each atom agree with the MB distri-
bution. Moreover, this excellent agreement strongly suggests
that, in spite of the smallness of the number of constituent
atoms �N=27�, each sampled atom is in thermal equilibrium
and the rest of the whole system operates as a heat reservoir
with well defined temperature �Salian �26� showed that a
system containing only four atoms works as a heat reser-
voir�.

However, a surprising fact is that the temperatures of the
different types are different although every atom is in equi-
librium with the common system, namely, the whole cluster,
and the maximum difference is as large as 15% �Table I�.

The local temperatures of each atom of the �NaI�13I
− clus-

ter are plotted in Fig. 3�a� as a function of the average dis-
tance �r�� from the center of mass. One can recognize only
four plots in the figure. This is because the atoms at the same

FIG. 2. The frequency distributions of the kinetic energy of the
Na+ atom �solid circles� at the center and the I− atom �white circles�
at a vertex of �NaI�13I− cluster and the corresponding theoretical
curves of MB distributions.

TABLE I. The local temperatures and distances from the center
of mass in the �NaI�13I− cluster at about 300 K, where r�, T�

MB, T�
�,

and ���� are the distance from the center of mass, local MB tem-
perature, local kinetic temperature, and average kinetic energy of an
atom, respectively.

�r��
�Å�

T�
MB

�K�
T�

�

�K�
����

�eV/atom�

Na+ 0.0 295.2 295.5 0.0381

4.4 291.8 292.0 0.0332

I− 3.3 272.0 272.7 0.0352

5.3 256.4 257.4 0.0332

FIG. 3. The local temperature
T�

� of each individual atom as a
function of the average distance
from the center of mass �r�� in
�NaI�13I−, Cu55, and Ar55. �a� The
local temperature of the �NaI�13I−

cluster. Solid squares and white
circles are the temperature of Na+

and I− atoms, respectively. �b� The
local temperature in Cu55 �white
squares� and Ar55 �black circles�
clusters.
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distance from the center have the same local temperature.
Moreover, it should be noticed that the plots of Na+ are

systematically higher than the plots of I−, which strongly
suggests a mass dependence of local temperature.

The results of numerical experiments with Ar55 and Cu55
clusters that are bounded by atomic interaction different from
�NaI�13I

− are shown in Fig. 3�b�. The kinetic temperature
was adjusted to TK�30 K, which is less than the melting
temperature of argon cluster, and the average moments of
inertia of Ar55 and Cu55 are 5.46	104 and 4.24	104 u Å2,
respectively. The maximum local temperature difference is
only about 3%, but the figure also shows that the local tem-
peratures decrease as the distance of the atom from the center
of the cluster increases and the heavier particles have lower
local temperatures.

Moreover, comparison of Figs. 3�a� and 3�b� also shows
that the heavier particles have lower local temperatures than
lighter ones since the mass of Na+ is smaller than I− and the
mass of Ar is smaller than Cu.

Next, we investigate dependence of local temperature
upon size of cluster or the total number of atoms contained in
the clusters. For this purpose, we carried out numerical ex-
periments for �NaI�62I

− �5	5	5 cubic structure; N=125�
and Cu147 �icosahedral structure� clusters. The simulation in-
terval and the temperature were taken as �=100 ns and TK
�300 K. From the numerical results, the average moments
of inertia of �NaI�62I

− and Cu147 were 3.89	105 and 2.18
	105 u Å2, respectively.

The local temperatures in the clusters are plotted against
distance from the center of mass in Fig. 4. The results for
�NaI�62I

− and Cu147 clusters are shown in Figs. 4�a� and 4�b�,
respectively. Maximum difference among the local tempera-
tures is significantly reduced; it is only about 3% for
�e4 ,e5 ,e6
 and it is 1% for Cu147 cluster.

Thus, we can conjecture that the distribution of local tem-
peratures over the atoms is not in general homogeneous in an
isolated small cluster but the inhomogeneity disappears as
the cluster size increases.

In a given cluster the local temperature defined for an
individual atom is lower for atoms at sites more distant from
the center or for atoms with heavier mass, but inhomogeneity
in the local temperature distribution disappears when the
number of atoms in the cluster becomes large.

E. Local temperature with nonvanishing total translational
and angular momentum

In the above numerical simulation, the system has con-
served quantities, namely, total translational and angular mo-

mentum, due to the spatial symmetry in the system. One
possibility is that the presence of conserved quantities may
modify the equilibrium condition significantly in small sys-
tems. If this is the case, we can conjecture that the tempera-
ture distribution will recover homogeneity when any external
force breaking the spatial symmetry is applied.

To confirm this conjecture we investigated a system for
which the total translational and angular momentum are not
conserved due to the application of an asymmetric external
perturbation represented by an asymmetric harmonic trap po-
tential U�x ,y ,z�=�xxx

2+�yyy
2+�zzz

2, where �xx, �yy, and �zz
are constant parameters of the potential and the trap is asym-
metrical when these parameters are not equal. We note that
when such an external potential is applied to a cluster, the
whole system including the external potential can still be
regarded as an isolated system.

We took �NaI�13I
− cluster for this examination and put the

cluster in the trap potential with the parameters �xx=0.5
	10−2, �yy =1.0	10−2, and �zz=0.7	10−2. The interval of
the simulation using the same procedure mentioned above
was �=1 �s and the temperature TK�300 K.

The local temperatures are shown in Fig. 5 as a function
of distance from the center of mass. Rigorously a very slight
difference among the local temperatures still remains but is
only about a few degrees at the maximum, which is much
less than the maximum difference without the trap �about 40
K in Fig. 3�a��. Disappearance of the temperature difference
was confirmed also in Cu and Ar clusters which have differ-
ent types of interaction.

FIG. 4. The local temperature
T�

� of each individual atom as a
function of the average distance
from the center of mass �r�� in
clusters consisting of many atoms.
�a� �NaI�62I− �N=125�. �b� Cu147

�N=147�.

FIG. 5. The local temperature T�
� of each individual atom as a

function of the average distance from the center of mass �r�� for the
�NaI�13I− cluster trapped in an asymmetrical harmonic potential.
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These results strongly support our conjecture that the con-
servation of total translational and angular momentum results
in inhomogeneity of local temperature distribution in isolated
clusters.

III. THEORETICAL ANALYSIS

In this section we evaluate the local temperature based on
statistical mechanics using microcanonical invariant measure
with conserved total translational and angular momentum.
The final aim of this section is to derive a rigorous formula
for the moment of local kinetic energy �� and an approximate
distribution function for the local kinetic energy under the
constraint of total translational and angular momentum con-
servation ��. All the results are expressed as average with
respect to the coordinate variables which represent the posi-
tion dependency explicitly.

We suppose that the system is ergodic and the long time
average of physical quantities can be replaced by the phase
space average with respect to the microcanonical invariant
measure with fixed angular momentum q and fixed total
translational momentum P0,

��q,p� = N
�H�q,p� − E�
�L − L0�
�P − P0� , �10�

where N is the normalization constant and E is total energy
of the system �35�. Here we use the mass-weighted coordi-
nate and momentum �qi ,pi�= ��miq̃i , p̃i /�mi�, where q̃i and p̃i
are the coordinate and momentum of ith atom in original
coordinate before transforming to mass-weighted coordinate,
i.e., these vectors correspond to the vectors qi and pi in Eq.
�9�, respectively. �Although this notation may cause some
confusion, we employ it for simplicity in descriptions be-
low.� So the Hamiltonian is given as

H�p,q� = �
i=1

N
pi

2

2
+ V�q1,q2, . . . ,qN� , �11�

and the total translational and angular momentum are

P = �
i=1

N

�mipi, L = �
i=1

N

qi 	 pi, �12�

respectively, where qi and pi are the coordinate and momen-
tum of ith atom and N is the number of atoms in the system.
For the sake of simplicity, we set L0=0 and P0=0 in the
sections below.

A. Collective momentum variables

We represent the whole system by the 3N-dimensional
coordinate and momentum vectors q and p, respectively,

q = t�q1x,q1y,q1z, . . . ,qNz� ,

p = t�p1x,p1y,p1z, . . . ,pNz� .

By using the microcanonical invariant measure the phase
space average of arbitrary physical quantity X�q ,p� is

�X�q,p�� =
� X�q,p���q,p�dqdp

� ��q,p�dqdp

. �13�

The integration over the variables q and p is done in the
following way. We first fix the coordinate variables q, then
integrate over the momentum variables p, and next integra-
tion over q is carried out. While carrying out the integration
over the momentum variables p, the constraint L=0 and P
=0 must be fully taken into account. For this purpose, it is
convenient to introduce collective variables associated with
the total translational and angular momentum, supposing that
the coordinate variables q are temporally fixed. We first
move to the frame which is taken as the principal axes of the
moment of inertia with the origin at the center of mass. We
call such a frame principal frame. Therefore the coordinate
variables in the frame can be treated as a function of the
variables in the original frame, q�=q��q�. In the principal
frame the coordinate and momentum vectors are represented
by

q�=t�q1x� ,q1y� ,q1z� , . . . ,qNx� ,qNy� ,qNz� � ,

p�=t�p1x� ,p1y� ,p1z� , . . . ,pNx� ,pNy� ,pNz� � ,

and we explicitly distinguish them from q and p.
Here we introduce an orthogonal transformation T�q��

which can transform into collective momentum and other
variables supposing that the coordinate vector q� is fixed.
The transformation T�q�� is a 3N	3N orthogonal matrix
composed of 3N vectors �ei
 as orthogonal basis, namely,
T= �e1 ,e2 , . . . ,e3N�. It is defined such that the first six vari-
ables of the transformed momenta �= tTp� form the three
components of total momentum and the three components of
total angular momentum, that is, t��1 ,�2 ,�3�= t�e1 ,e2 ,e3�p�
= t�Px� , Py� , Pz�� /�M and t��4 ,�5 ,�6�= t�e4 ,e5 ,e6�p�

= t�
Lx�
�Ix

,
Ly�
�Iy

,
Lz�
�Iz

� �the primes indicate the coordinate in the prin-
cipal frame�, where M and I� are total mass, M =�i

Nmi, and
inertia moment of the cluster I�=�i

N�qi��
2+qi��

2�, respectively,
where �� ,� ,�� are cyclic permutation of �x ,y ,z�. Thus
�e1 , . . . ,e6
 must be

e1 = t��m1,0,0, . . . ,�mN,0,0�/�M ,

e2 = t�0,�m1,0, . . . ,0,�mN,0�/�M ,

e3 = t�0,0,�m1, . . . ,0,0,�mN�/�M ,

e4 = t�0,− q1z� ,q1y� , . . . ,0,− qNz� ,qNy� �/�Ix,

e5 = t�q1z� ,0,− q1x� , . . . ,qNz� ,0,− qNx� �/�Iy ,

e6 = t�− q1y� ,q1x� ,0, . . . ,− qNy� ,qNx� ,0�/�Iz,
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respectively. These vectors are normalized by M and I�.
�e1 ,e2 ,e3
 are obviously orthogonal with each other. A vector
in �e1 ,e2 ,e3
 and a vector in �e4 ,e5 ,e6
 are also orthogonal
because the inner product gives a component of the position
of the center of mass. The inner product between two differ-
ent vectors in �e4 ,e5 ,e6
 is proportional to an off-diagonal
element of the inertia tensor, and so it vanishes. It is obvious
that all the vectors are normalized to unity, thus all the six
vectors are unit orthogonal vectors. This type of transforma-
tion was also introduced by other researchers �for instance,
see the appendix of Ref. �28��.

Here we consider the unit orthonormal vectors �a j

�1� j�3N� with all components zero except for the jth el-
ement which is 1. These obviously form a normalized set.
With these vectors we can construct the undetermined unit
orthogonal vectors �e j
 for j�7 as

ei = 	ai − �
k=1

i−1

�aiek�ek
/�ai − �
k=1

i−1

�aiek�ek�
using Gram-Schmidt orthogonalization, and we obtain the
explicit form of the transformation matrix T as Tij =

tai e j.
Finally it should be remarked that the relation

Tij = tei e j = 0 �7 � i � j � 3N� �14�

holds because these vectors ei are orthogonal with previous
one, e j �j� i�.

B. Statistical average

To investigate local kinetic temperature, it is necessary to
evaluate the phase space average of the kinetic energy of one
of the atoms which consists of an isolated cluster. For this,
we consider, first of all, a formula for the statistical average
of an arbitrary physical quantity X�q ,p� which is invariant
under spatial rotation of the momentum vectors of individual
atoms.

Before evaluating the statistical average �Eq. �13��, we
introduce entropy and thermodynamic temperature. We
choose the phase space volume enclosed by the equienergy
surface as the basis for entropy. Taking into account the con-
straints L0=0 and P0=0, the phase space volume is

��E� =� dqdp
�L�
�P���E − H�q,p�� , �15�

where ��x� is step function. An alternative basis for entropy
is the area of the equienergy surface or density of state
d��E� /dE, which quantitatively represents the loss of infor-
mation on the equienergy surface. On the other hand, ��E� is
an adiabatic invariant if the system is ergodic, so we think it
is a legitimate choice as a basis for entropy. By using ��E�,
entropy S and temperature T are defined as

S = kB log ��E�, T = ���E�/��E� . �16�

�This definition of entropy is not unique. We adopt here the
definition based on the adiabatic invariant ��E� �36�.�

For evaluating the statistical average �Eq. �13��, we
change the reference frame from the rest frame to the prin-
cipal frame, then the momentum variables p� are split into

collective and internal momentum variables with the trans-
formation T�q�� introduced in Sec. III A. The momentum
represented in the new frame is related to a new variable �,

p� = T�q��� . �17�

We first carry out the integration over p �or p�� by transform-
ing the variables from p to � and next complete the integra-
tion over the coordinate variables q. For the purpose of the
present paper, we are allowed to suppose that the quantity
X�q ,p� is invariant under the rotation of individual momen-
tum vector, and so X�q ,p�=X�q ,p��. Noticing that P
=�M��1 ,�2 ,�3� and L= ��4

�Ix ,�5
�Iy ,�6

�Iz�, Eq. �13� be-
comes

�X�q,p�� =
� d�dqX�q,T�q������,q�/��I�q��

� d�dq���,q�/��I�q��
, �18�

where ��� ,q�=�i=1
6 
��i�
�E−H�q ,��� is reduced measure

�22,28,37�, and I�q�= IxIyIz. �Also note that H�q ,p�=H�q ,��
because �2=p�2=p2.�

The above transformation can immediately be applied to
compute the phase space volume defined by Eq. �15�. In-
deed, by using the new variables �, Eq. �15� is rewritten as

��E� =� dq/�I�q�� d��
i=1

6


��i���E − H�q,���

=� dq/�I�q�� �
i=7

3N

d�i��K�E,q� − �
i=7

3N

�i
2/2� ,

�19�

where

K�E,q� = E − V�q� �20�

is the total kinetic energy of the system. Integration over �i in
Eq. �19� is nothing more than the volume of the
3N−6-dimensional hypersphere with the radius �2K�E ,q�,
and so we get

��E� = �3N−6� dq�2K�E,q���3N−6�/2/�I�q� , �21�

where �M is the volume of M-dimensional unit hypersphere
which is described with the gamma function ��z�: �M
=�M/2 /��M +2 /2�.

The quantity X�q ,p� which we would like to compute
contains only the variables associated with one atom �or mul-
tiple atoms� in the cluster. In such a case, it contains only a
small number of �i variables including the first six variables
�1, �2 , . . . ,�6 as will be shown in Secs. III C–III E. Thus we
suppose the quantity X contains only a part of the momentum
variables �����1 ,�2 , . . . ,�6+s�, where s is an integer �0�s
�3N�. Then we can write X�q ,p�=X�q ,p��=X�q ,T���, and
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the integration over the rest of momentum variables
�7+s , ¯ ,�3N can be executed as follows:

� 
�E − V�q� − �2/2� �
i=7+s

3N

d�i

=
d

dE
� ��K�E − ��2/2,q� − �

k=7+s

3N

�k
2/2� �

i=7+s

3N

d�i

= �3N − 6 − s��3N−6−s�2K�E − ��2/2,q���3N−8−s�/2,

�22�

where we use the fact that the integral in the second term is
the volume of a 3N−6−s-dimensional hypersphere with ra-
dius �2K�E−�� /2,q�. Applying this relation in Eq. �18�
gives the formula for statistical average,

�X�q,p�� = CN,s

� d��dqX�q,T����̂���,q�/��I�q��

� dq�2K�E,q���3N−8�/2/��I�q��
. �23�

�̂���,q� = �
i=1

6


��i��2K�E − ��2/2,q���3N−8−s�/2, �24�

where

CN,s =
3N − 6 − s

3N − 6

�3N−6−s

�3N−6
�25�

and for the denominator integration Eq. �22� with s=0 is
used. In particular, we can also obtain the statistical average
of quantities depending on only the coordinate q,

�X�q�� =
� dqX�q��2K�E,q���3N−8�/2/��I�q��

� dq�2K�E,q���3N−8�/2/��I�q��
, �26�

by setting s=0 and CN,0=1 and integrating over �1 , . . . ,�6.
We here remark that the notation � � often used in the main
results of the present paper is the statistical average in the
sense of Eq. �26�.

As a simple application we examine the moments of the
total kinetic energy. Since the total kinetic energy is p2 /2
=E−V�q�=K�E ,q�, putting X�q�=K�E ,q�D and s=0 into Eq.
�26�, we immediately obtain

�K�E,q�D� =
1

2D

� dq�2K�E,q���3N−8�/2+D/�I�q�

� dq�2K�E,q���3N−8�/2/�I�q�
. �27�

Moreover, comparing this and the definition of thermody-
namic temperature �Eq. �16��, which is based on the defini-
tion of the entropy using the phase volume �Eq. �21��, im-
mediately leads to the result

T�E� =
�2K�E,q��
�3N − 6�kB

. �28�

This equation agrees with the conventional microcanonical
kinetic temperature �Eq. �5��. It should be remarked that, if
the entropy is defined by the density of state, namely, S
=kB log�d��E� /dE�, the above relation, which allows the
simple physical interpretation that 6 degrees of freedoms are
quenched by the conservation law, is subtly modified.

C. Average kinetic energy of a particle

The numerically observed results in this paper suggest
that the local kinetic energy is closely connected with the
local temperature, and so we first evaluate analytically the
average value of kinetic energy ���� of an atom in an isolated
cluster. Let us consider the �th atom in the cluster. According
to the procedure of the statistical average represented by Eq.
�18�, we first fix q and then calculate the x component of �th
atom’s kinetic energy p�

2 /2=p��
2 /2 in the principal frame,

namely, p�x�
2 /2 by integrating over the new variables �. Fi-

nally the average over the q is taken. We take p�x� as the
seventh component of the vector p�. Because of Eq. �14�, the
following relation holds:

p�x� = �
k=1

7

T7k�k. �29�

Since the average formula �Eq. �23�� with s=1 contains
�i=1

6 
��i�, making use of Eq. �29� gives

� p�x�
2

2
� =

CN,1

2

� �ta7 e7�2�7
2�2K	E −

�7
2

2
,q
��3N−9�/2

d�7dq/��I�q��

� �2K�E,q���3N−8�/2dq/��I�q��
. �30�

The integration over the momentum variable �7 can easily be done by using the relation
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CN,1� �i
2�2�E − �i

2/2 − V���3N−9�/2d�i =
�2K�E,q���3N−6�/2

3N − 6

�see Appendix A�. Consequently, the statistical average of
p�x�

2 /2 reduces to the average over the coordinate variables in
the sense of Eq. �26�,

� p�x�
2

2
� =

��ta7 e7�q��2K�E,q��
3N − 6

. �31�

Thus the only information necessary is the q dependence of
the vector e7. The vector e7 is constructed according to the
Gram-Schmidt procedure so as to be orthogonal to the first
six vectors e1 ,e2 , . . . ,e6, which leads to

�ta7 e7�2 = 	1 −
m�

M
−

q�z�
2

Iy
−

q�y�
2

Iz

 . �32�

In the above consideration, we took p7� �the seventh compo-
nent of p�� as the x direction momentum of the �th atom p�x� .
The cyclic permutations �x ,y ,z�→ �y ,z ,x�→ �z ,x ,y� allow
us to replace p7 by y and z components of the original mo-
mentum vector, which gives the expression for �p�y�

2 /2� and
�p�z�

2 /2� corresponding to Eq. �31� with Eq. �32�. Therefore,
the general expression corresponding to Eq. �32� is

� p���
2

2
� = ��1 −

m�

M
−

q���
2

I�

−
q���

2

I�
�K�E,q�

3N − 6
� , �33�

where �, �, and � is a cyclic permutation of x, y, and z.
The sum of the three components yields the average ki-

netic energy of �th atom,

���� =��3 − 3
m�

M
− �

�=x,y,z

q���
2 + q���

2

I�
�K�E,q�

3N − 6� , �34�

where �� is the kinetic energy of the �th atom.
Since I��Nr2 and q���

2 �r2, where r is the radius of the
cluster, the position dependent part in the right-hand side
�rhs� of ���� is less than O�1 /N� and so it vanishes in the
thermodynamic limit. When fluctuation of an atom from its
equilibrium position is very small, i.e., the cluster is in a
solid state, then in Eq. �34� the q��-dependent part does not
fluctuate very significantly. Indeed, the fluctuation of q���

2 / I�

is estimated as


�q2/I� � 2
q

I

q +

q2

I


I

I
� 2

qa

I


q

a
+

q2

I
N−1/3
q

a
, �35�

where 
q /a is the ratio of the position fluctuation of an atom
to the bond length, which is less than 0.1 in the solid phase,
as is well known as the Lindemann index. Thus the relative
fluctuation is small and the position dependent factors in Eq.
�34� can be taken out of the average.

According to the numerical simulation discussed in Sec.
II, we defined the local temperature of the �th atom by using
its average kinetic energy: T�

�=
2����
3kB

. Suppose that the cluster
shape is approximately isotropic and so all the moments of
inertia are nearly equal: I= Ix� Iy � Iz. Then local tempera-

ture can be regarded as a function of the �th atom’s distance
from the center of mass r�=�q�x�

2+q�y�
2+q�z�

2. It also depends
on the mass of the atom,

T�
� = 	1 −

m�

M
−

2

3

m�r��2

�I�

T�E� , �36�

where the relation between thermodynamic temperature and
total kinetic energy T�E�= �2K�E,q��

�3N−6�kB
was used �Eq. �28��. From

the above equation, when the system is a microcanonical
ensemble whose total translational and angular momentum
are zero, it is expected that the local kinetic temperature of
an atom decreases as its distance from the center of mass
increases. Detailed comparison with numerical results will
be discussed in Sec. IV.

D. nth-order moment of kinetic energy of a particle

In Sec. III C we have derived the first-order moment of
the kinetic energy of any atom, but it is insufficient for de-
riving the distribution function. In the present section, we
demonstrate that a rigorous expression for the nth-order mo-
ment of the local kinetic energy, which has the information
equivalent to the distribution function, can be derived. This
is a generalization of Eq. �34�.

Let p��= t�p�x� , p�y� , p�z� � be the momentum of the �th atom
in the principal frame and ��= t��7 ,�8 ,�9� be the new mo-
mentum corresponding to p�� in the new frame. We again
make use of formula �23� and average over the new momen-
tum variables. To this end we take the submatrix of T�q��
containing only the relevant components, namely,

T��q�� = �T77 0 0

T87 T88 0

T97 T98 T99
� , �37�

then the new momentum vector is related to the original
momentum vectors as p�=T��q���� because Eq. �14� holds
and �1 ,�2 , . . . ,�6 can be taken as null according to the

-functional distribution in Eq. �24�.

Thus the kinetic energy of the �th atom is written as

�� = 1
2

t����q���, �38�

where ��q�= tT� T� is a 3	3 symmetric matrix.
Substituting the expression into Eq. �23� with X��� ,q�

=��
n and s=3, we calculate the statistical average of the

nth-order moment,

���
n� =

CN,3

2

� d��dq�t�� ��q����n�̂���,q�/��I�q��

� dq�2K�E,q���3N−8�/2/��I�q��
, �39�

where �̂��� ,q�= �2K�E−��
2 /2,q���3N−11� /2 and CN,3

= 3N−9
3N−6

�3N−9

�3N−6
. By introducing the orthogonal transformation

U :��→��
� diagonalizing the matrix �, the function

�t�� ��q����n in the integrand is expressed as
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	�
i=7

9

�i�i
�2
n

= �
n7+n8+n9=n

n!

n7 ! n8 ! n9!�i=7

9

�i
ni�i

�2ni, �40�

where �7, �8, and �9 are eigenvalues of the matrix ��q�.
Substituting this into Eq. �B8� gives the nth moment of ki-
netic energy of the � atom as

���
n� = �

n7+n8+n9=n

n!

n7 ! n8 ! n9!
CN,3D�n7,n8,n9�

	��
i=7

9

�i�q�ni�2K�E,q��n� , �41�

where D�n7 ,n8 ,n9� is a constant described in Appendix B.
The angle brackets in the left-hand side are the statistical
average defined by Eq. �26�.

Equation �41� says that the nth moment ���
n� can be de-

scribed in terms of symmetrical polynomials of the eigenval-
ues �7, �8, and �9, which are all expressed by the three basic
symmetrical polynomials �7+�8+�9, �7�8+�8�9+�9�7, and
�7�8�9 for the cubic characteristic equation of the 3	3 ma-
trix ��q�. The three basic symmetrical polynomials are, on
the other hand, expressed in terms of the coefficients of the
cubic equation depending explicitly on the coordinates of the
atom. The coefficients can be calculated by the three succes-
sive Gram-Schmidt procedures of orthogonalization to ob-
tain e7, e8, and e9, which are straightforward extensions of
the task described in Sec. III C. The computation is tedious
but straightforward. We thus only refer to the final result,

�7 + �8 + �9 = �
�=x,y,z

e��,

�7�8 + �8�9 + �9�7 =
1

2 �
���

�e��e�� − e��
2 � ,

�7�8�9 = − 2exyeyzezx + exxeyyezz − �
�����

e��e��
2

2
.

The parameters e�� �� ,�=x ,y ,z� are expressed in terms of
the moment of inertia �which depends on all the components
of q� and the coordinates of the atom,

e�� = 
�� + 
e��, �42�

where


e�� � 
��	−
m�

M
−

q���
2

I�

−
q���

2

I�

 − �1 − 
���

q��� q���

I�

�43�

and 
�� is Kronecker’s delta. For instance, it is easily shown
that exx corresponds to Eq. �32�.

One can readily check the first moment

���� =

�
j=7

9

�� j�q�2K�E,q��

3�3N − 6�
�44�

reproducing the expression of Eq. �34�.

As mentioned in Sec. III C, all the quantities such as
�q��

2 / I�� and �q��q�� / I�� in the rhs of the second equation are
all less than O�1 /N� and 
e�� is a quantity of O�1 /N�,
namely, e�� is 
�� plus q�-dependent part of O�1 /N�. Then
from Eq. �42� one can easily prove that all the characteristic
roots are approximately 1, and the deviation from it, which
depends on the coordinate vector q, is of O�1 /N�,

�i�q� = 1 + 
�i�q� , �45�

where �
�i�q���O�1 /N�.

E. Distribution function of local kinetic energy

The expressions obtained in Secs. III A–III D are rigorous
but physically less intuitive. What we would like to know is
whether or not the distribution function of local kinetic en-
ergy �� really follows the Maxwell-Boltzmann distribution
with the local temperature defined by T�

�=
2����
3kB

. In this sec-
tion we show that the distribution of the kinetic energy does
follows the Maxwell-Boltzmann distribution under some ap-
proximation.

First the distribution function of �� is given by

����� = �
�p��
2/2 − ���� . �46�

As has been done in Sec. III D �Eq. �38��, we transform the
momentum p�� into the new momentum variables ��; p��

2 /2
= t�� ��q��� /2, ���= t��7 ,�8 ,�9��. Then the statistical average
in the rhs is computed by setting X�q ,��=
�t�� ��q��� /2
−��� in Eq. �23�. Further, as in Sec. III D, making the trans-
formation diagonalizing ��q� with the orthogonal transfor-
mation U :��→��

� and introducing new momentum variables

�̃i=��i�i
�, we are finally lead to the following expression:

����� = CN,3

� d�̃�
�t�̃��̃�/2 − ���F��̃7
2, �̃8

2, �̃9
2�

� dq�2K�E,q���3N−8�/2/��I�q��
. �47�

Here the function F��̃7
2 , �̃8

2 , �̃9
2� is defined by

F��̃7
2, �̃8

2, �̃9
2� =� dq/��I�q���

j=7

9

�i�q�−1/2

	�2K	E − �
j=7

9
�̃i

2

2�i�q�
,q
��3N−11�/2

.

To make further evaluation some approximation is inevi-

table. We here exponentialize the function F��̃7
2 , �̃8

2 , �̃9
2� and

apply the cumulant expansion

log F��̃7
2, �̃8

2, �̃9
2� = log F�0,0,0�

+ �
i=7

9 � �F��̃7
2, �̃8

2, �̃9
2�/� �̃i

2

F��̃7
2, �̃8

2, �̃9
2�

�
�̃i

2=0

�̃i
2 + O��̃i

2�̃ j
2� .

�48�

The approximation made here is to neglect terms of order
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higher than quadratic terms. The cumulant expansion is
roughly a system size expansion, and this approximation
means to neglect all the terms less than or equal to O�1 /N�.

The coefficient of the lowest order term �̃i
2 is given by

−
3N − 11

2

� dq
��I�q��

�
j=7

9

� j�q�−1/2�i�q�−1�2K�E,q���3N−13�/2

� dq
��I�q��

�
j=7

9

� j�q�−1/2�2K�E,q���3N−11�/2

.

In order to apply Eq. �26�, we divide both the numerator and
denominator by �dq /��I�q���2K�E ,q���3N−8�/2. Then the low-
est order cumulant expansion leads to the following result:

����� �� d�̃�
��� − �̃�
2/2�exp�− �

j=7

9

� j�̃ j
2� , �49�

where the coefficient �i, which comes from the coefficient
Eq. �49�, is

�i =
3N − 11

2

��
j=7

9

� j�q�−1/2�i�q�−1�2K�E,q��−5/2�
��

j=7

9

� j�q�−1/2�2K�E,q��−3/2� .

�50�

The integration over �̃i is done by using the polar coordinate

����� � ���e−��1+�2����
0

1

dxe��1+�2−2�3���x2
I0

	������1 − �2���1 − x2�� , �51�

where I0�z� is zeroth-order modified Bessel function: I0�z�
= 1

2��0
2�exp�z cos 2��d�.

Let us introduce the harmonic average of 2�i as

1

�
�

1

3�
j=7

9
1

2� j
. �52�

In the energy regime of �� such that ����O�1� where the
distribution has a significant weight, the distribution function
is expanded by the smallness parameter ��i−� j� /����i−� j�
�O�1 /N� �see Eqs. �45� and �50��,

����� � ���e−����1 + 	−
2���

9
+

2��
2�2

45

�

i�j

��i − � j�2

�2

+ O	 ��i − � j�3

�3 
� . �53�

The above expression suggests that the distribution function
deviates from the Maxwell-Boltzmann distribution. But the
coefficient of the correction term, which is proportional to
���i−� j� /��2���i−� j�2�O�1 /N2�, is very small. We can
thus neglect the correction terms, and the distribution func-
tion is well approximated by the Maxwell-Boltzmann distri-
bution,

����� � ���e−��/kBT̃�
MB

�54�

with the local MB temperature

T̃�
MB =

1

3�3N − 11�kB

	�
i=7

9 ��
j=7

9

� j�q�−1/2�2K�E,q��−3/2�
��

j=7

9

� j�q�−1/2�i�q�−1�2K�E,q��−5/2� . �55�

This expression is seemingly rather different from the rigor-
ous expression for the local kinetic temperature defined by
Eq. �4� with Eq. �44� or �34� on the basis of the average
kinetic energy.

This is, of course, due to the approximations applied so
far. However, as shown below, these two expressions coin-
cide if N is large enough. For brevity, let us denote the fac-
tors �i�q� and � j=7

9 � j�q�−1/2�i�q�−1 in Eq. �55� by X�q� and
Y�q�, respectively. Then the numerator in the rhs of Eq. �55�
can be expressed by ��2K�−3/2XY�. If the factorization
��2K�−3/2XY�= ��2K�−5/2Y 	2KX����2K�−5/2Y��2KX� is al-
lowed, Eq. �55� coincides with Eq. �4� with Eq. �44� �or Eq.

�34�� and T�
� can be identified with T̃�

MB. We, therefore,
evaluate the deviation of the ratio of the two quantities from
unity,


 �
��2K�q��−3/2X�q�Y�q��

��2K�q��−5/2Y�q���2K�q�X�q��
− 1, �56�

where K�q�=K�E ,q�. We separate each quantity into its sta-
tistical average and the deviation from the average,

K�q� = �K� + 
K�q�

X�q� = �X� + 
X�q�

Y�q� = �Y� + 
Y�q� . �57�

It should be noted that, by the definition and Eq. �45�, �X�
and �Y� may both depend on the position q� of the �th atom
but they are both nearly 1, and 
X�q� and 
Y�q� are of
O�1 /N�, whereas �K� is the average of the total kinetic en-
ergy and independent of q�. Substituting Eq. �57� into Eq.
�56� and expanding into the powers of k=
K / �K�, x
=
X / �X�, and y=
Y / �Y�, Eq. �56� is estimated as


 � − 5
2 �k2� − 5

2 �kx� + �ky� + �xy� . �58�

Since �k2�= �
K2�
�K�2 �O�1 /N� and �x�= �
X�

�X� �O�1 /N�, the largest
order contribution comes from the first term of the rhs, which
does not depend on q�. In particular, since we assume the
fluctuations are small, i.e., in solid phase, x and y are ex-
tremely small as x� q2

I N−1/3 
q
a �N−4/3 
q

a according to the es-
timation of Eq. �35�. Consequently, up to the correction of
O�1 /N�, the ratio of the two temperatures is a constant inde-
pendent of the position of the �th atom,
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T̃�
MB

T�
� �

3N − 6

3N − 11
	1 −

5

2
��K − �K��2

�K�2 �
 , �59�

which is very close to 1. Thus we have proved that the dis-
tribution function of the kinetic energy of a single particle is
the Maxwell-Boltzmann distribution characterized by the lo-

cal effective temperature T̃�
MB which can be identified with

T�
�.

IV. DISCUSSION

In this section, by comparing the numerical results pre-
sented in Sec. II with the analytical evaluation in Sec. III, we
conclude that inhomogeneity of local temperature in micro-
clusters can be explained as a property of a microcanonical
ensemble whose total translational and angular momentum
are conserved. Then we give an intuitive interpretation for
the origin of inhomogeneity in the local temperature, which
makes the role of the momentum conservation more clear.

A. Comparison of numerical results and analytical
evaluation

Returning to original coordinates from mass-weighted
ones, the local temperature �Eq. �36�� is rewritten as

T�
� = 	1 −

m�

M
−

2

3

m��r��2

�I�

T�E� . �60�

This equation explains the decrease in T�
� depending on the

atomic mass m� and distance from the center of mass �r��.
First of all, we consider clusters consisting of a single

species of atoms. The numerical experiments corresponding
to this situation are shown for Ar55 and Cu55 clusters in Sec.
II �Fig. 3�b��, which are both set to the same thermodynamic
temperature T�E�. The theoretical curves and the numerical
results are compared in Fig. 6�a�, which shows a nice agree-
ment between the theoretical and numerical results.

The second term of the equation −m� /M =−1 /N is com-
mon for Ar55 and Cu55 clusters, and therefore the local tem-
peratures of the atoms at the centers of the clusters Ar55 and
Cu55 are very close at the same thermodynamic temperature.
The third term of the equation explains the decrease in local
temperature with increase in the distance from the center.
The rate of decrease is controlled by the factor

m�

�I�
=

3

2
	�

i=1

N

ri
2
−1

, �61�

which is determined by the size of the clusters if they have
similar structure and consist of the same number of atoms.
Ar55 and Cu55 clusters considered here have the same icosa-
hedral structure, and the radius of the former cluster is larger
than the latter one, and so the above ratio is smaller in the
former cluster. This is the reason why the theoretical curve of
local temperature of Cu55 decreases more rapidly than that of
Ar55.

Second, we consider clusters which consist of different
species of atoms with different masses. In our study, we have
employed an alkali halide cluster as a binary cluster system
in Sec. II. Figure 6�b� shows a comparison between the nu-
merical result and theoretical curves of �NaI�13I

− cluster,
where the black squares and the white circles represent Na+

and I− atoms, respectively. In the figure, the agreement is
quite good even in such a binary system. In a binary system,
the theoretical curve splits into two curves because the sec-
ond and the third terms of Eq. �60� contribute differently
depending on the mass of the particle. Thus the local tem-
perature exhibits different dependence on the distance for
different species of atoms. In the simulation presented here,
the masses of Na+ and I− are mNa=22.99 u and mI
=126.9 u, respectively. I− is about five times heavier than
Na+. Therefore the local temperature of Na+ is higher than
that of I− at the center because of the difference in the second
term. The decreasing rate of local temperature, which is con-
trolled by the third term, is five times larger for I− atoms than
for Na+ atoms. The numerical results in Fig. 6�b� exactly
follow the above expectation: the local temperature of the
heavier atom �I−� drops more rapidly than that of the lighter
one �Na+�.

Finally, the theoretical result of local temperature �Eq.
�60�� shows that the inhomogeneity of local temperatures
depends on the number of atoms in the cluster. Indeed, the
second and third terms of the equation decrease in inverse
proportion to N. Therefore, the inhomogeneity of the local
temperature disappears in the thermodynamic limit N→�, as
has been stressed in Sec. III.

In fact, numerical results support this expectation: the de-
creasing rate of local temperature in N=125��NaI�62I

−� or
N=147�Cu147� clusters is less noticeable than that of N
=27��NaI�13I

−� and N=55�Cu55�. The numerical results and
theoretical evaluation are shown in Fig. 7, which confirms

FIG. 6. The local temperature
T�

� of each individual atom as a
function of the average distance
from the center of mass �r�� and
the theoretical curves �Eq. �60��.
�a� Cu55 and Ar55. �b� �NaI�13I−.
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that the theoretical prediction reproduces the dependency of
the inhomogeneity in the local temperature on the total num-
ber of particles.

Thus we have confirmed that the inhomogeneity of the
local temperature is caused by the conservation of total trans-
lational and angular momentum. This is, of course, consis-
tent with the numerically observed fact that the inhomogene-
ity disappears when these quantities are not conserved after
adding an anisotropic trap potential in Sec. II E. Smallness of
the system emphasizes the effect of conserved quantities,
making it possible to observe the inhomogeneity in the local
temperatures of the individual atoms.

Finally, we refer and apply our result to Jellinek-Goldberg
work �25�. Jellinek and Goldberg �25� introduced dynamical
degrees of freedom f� which can be described by the theo-
retical evaluation of local temperature:

fk

Nk
= �1−

mk

M

− 2
3

mk�rk�2

�I� � 3�3N−8�
3N−6 , where fk and Nk are dynamical degrees of

freedom and the number of particles belonging to kth shell of
the cluster and mk and rk are mass and distance from the
center of mass of one of the atoms belonging to kth shell. We
note that our evaluation gives good agreement with the nu-
merical results by Jellinek and Goldberg �25�, where average
inertia moments of the clusters were obtained by numerical
experiments with a many-body Gupta-type potential and
used for theoretical evaluation: �I��1.56	103 u Å2 for
�Al�13 and 1.98	104 u Å2 for �Al�55. Hence our result can
explain their results.

B. Intuitive interpretation of inhomogeneous local temperature

In this section, we derive Eq. �34� �or Eq. �60�� by a very
heuristic argument supposing that a cluster is in solid phase.

First of all, we consider the cluster as an N-particle er-
godic system in which total translational and angular mo-
mentum are not conserved. Then the total kinetic energy of
the system K� is equally distributed among all the particles
and all degrees of freedom according to the standard equi-
partition rule, and the kinetic energy per 1 degree of freedom
and the kinetic energy per particle are K� /3N and K� /N,
respectively, by the equipartition theorem.

The kinetic energy possessed by �th atom �� is the sum of
atomic vibrational energy ��

V, overall translational energy ��
G,

and overall rotational energy ��
R: ��

G+��
R+��

V= K�
N . On the

contrary, if the total translational and angular momentum are
conserved the �th atom energy consists only of vibrational
energy, that is,

�� =
K�

N
− ��

G − ��
R. �62�

We first consider the energy distributed to the rotational mo-
tion, which can be decomposed into the rotational motions
around the three principal axes of the moment of inertia.
Each of the 3 rotational degrees of freedom has the average
kinetic energy K� /3N, respectively. Let � be the angular
frequency of the whole rotational motion of the cluster, then
the average kinetic energies of each component should be
given by

I�

2 ��
2 =K� /3N. In this rotational motion the rota-

tional kinetic energy distributed to a particle is ��
R= 1

2 �I�x�x
2

+ I�y�y
2+ I�z�z

2�, where I�� is the moment of inertia around
the principal axis � contributed by the �th particle, and it is
given by m��q���

2 +q���
2�. From all the above relations, the

overall rotational energy distributed to the �th particle is

��
R =

m�

3 �
�����

q���
2 + q���

2

I�

K�

N
. �63�

A similar argument holds also for the overall translational
energy. It is obvious that the translational energy distributed
to the �th particle is

��
G = m�/M 	 K�/N . �64�

Substituting Eqs. �63� and �64� for Eq. �62�, we get

�� = 	1 −
m�

M
−

m�

3 �
�,�,�

��
2 + ��

2

I�

K�

N
. �65�

Finally, we replace the total kinetic energy K� with K, the
kinetic energy of the system for which the translational and
rotational motions are frozen. Since the kinetic energy dis-
tributed to 1 degree of freedom is equal the relation K / �3N
−6�=K� /3N should hold. Then Eq. �65� essentially agrees
with the rigorous expression for the kinetic energy repre-
sented by Eq. �34�. The above argument shows us that the
second and third terms in theoretical evaluation �Eq. �60� or
�65�� obviously result from freezing of the overall transla-
tional and rotational motions, respectively.

In this paper, we considered only isolated clusters, i.e.,
systems under free boundary condition; however the above
argument gives some expectations as follows. First, even for
a system under periodic boundary condition, total transla-
tional momentum is still conserved so the effect of the sec-
ond term which has mass dependence remains if the number
of particles in the supercell of the periodic condition is small

FIG. 7. The local temperature
T�

� of each individual atom as a
function of distance from the cen-
ter of mass �r�� and the theoretical
curves �Eq. �60��. �a� �NaI�62I−

�N=125�. �b� Cu147.
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enough. Second, in Sec. III our evaluation is only for the
systems whose total translational momentum P0 and rota-
tional momentum L0 are equal to zero, i.e., ��

G=��
R=0. How-

ever, even if ��
G�0 or ��

R�0, our evaluation can be easily
extended if P0 and L0 are small enough. Finally, we assumed
that clusters are in solid state implicitly in the above deriva-
tion. If the cluster is in liquid state, frequent exchange of
position of particles results in vanishing of the third-term
effect containing position dependence, but the second term
with no position dependence does not disappear.

If all the degrees of freedom are active the kinetic ener-
gies distributed to individual particles are equal, but when
the collective degrees of freedom contributing to the total
translational and/or rotational motion are frozen, the kinetic
energies of individual particles become inhomogeneous be-
cause the contributions from such macroscopic degrees of
freedom to the kinetic energy, which depend on the position
and mass of each particle according to Eqs. �63� and �64�, are
missing �see Fig. 8�. Such missing energy is inversely pro-
portional to the number of particles and is significant only in
systems consisting of small number of particles.

We stress that the above argument only conventionally
explains the kinetic energy distributed to each particle, but it
does not explain why the distribution function of kinetic en-
ergy obeys the Maxwell-Boltzmann distribution character-
ized by a temperature related to the local kinetic energy.

V. CONCLUSION

In this paper, we showed that dynamical conserved quan-
tities cause inhomogeneous kinetic energy distribution in mi-
crocanonical ensemble for a system composed of a small
number of particles with conservation of total translational
and angular momentum using MD simulations of microclus-
ters and theoretical analysis of statistical mechanical proper-
ties of the ensemble.

In constant energy MD simulations of isolated cluster sys-
tems with archetypal two body interaction potential,
Lennard-Jones potential �as Ar clusters�, Morse potential �as
Cu clusters� with icosahedral structures, and Coulomb poten-
tial �as �NaI�n clusters� with rocksalt-type structures, we
showed that local temperatures, i.e., the kinetic energies dis-
tributed to each atom, can be inhomogeneous even when the
kinetic energies of all particles fit the Maxwell-Boltzmann
distribution, i.e., the system is in thermal equilibrium. The
numerical results revealed that the local temperature depends
on the mass and distance of each atom from the center of
mass. Specifically, the temperature of a particle decreases
with increase in its distance from the center of mass, and the
temperature of a heavier particle is less than that of a lighter
one in a binary component cluster containing different mass
particles, e.g., alkali halide cluster. These behaviors are sup-
pressed as the number of particles of the system increases.

For analysis of these behaviors, we evaluated statistical
average of kinetic energy distributed to individual particle
�Eq. �36�� and deduced approximately the distribution func-
tion of the energy �Eqs. �54� and �55�� based on statistical
mechanics of microcanonical ensemble with conservation of
total translational and angular momentum. The agreement
between the theoretical evaluation of the average kinetic en-
ergy and the numerical results was quite good. Therefore we
concluded that the inhomogeneity of local temperature is
caused by the existence of the conserved quantities, total
translational, and angular momentum. It is not dependent on
the type of the interactions between the particles but depends
on the translational and rotational symmetries of the system.

ACKNOWLEDGMENTS

This work was supported by Grant-in-Aid for JSPS Fel-
lows �KAKENHI� from the Ministry of Education. The au-
thors are grateful to S. Tsuji for his hospitality.

APPENDIX A

Consider the integral with respect to a mass-weighted mo-
mentum �i,

B =� �i
2�2�K�E,q� − �i

2/2�
D/2d�i, �A1�

where K�E ,q�=E−V�q� is the total kinetic energy of a sys-
tem. Since the kinetic energy of a degree of freedom �i

2 /2 is
less than the total kinetic energy, the integral domain is from
−�2K to �2K. Now we define the new momentum as �i

�

=�i /�2K�E ,q�, then the integration is given by

B = �2K�E,q���D+3�/22�
0

1

�i
�2�1 − �i

�2�D/2d�i
�. �A2�

The integration on the right-hand side is described by a beta
function: �0

1�i
�2�1−�i

�2�D/2d�i
�=B�3 /2,D /2+1� /2= 1

2�D+2�
�D+3

�D+2
.

Therefore we can integrate it and get the relation

� �i
2�2K�E − �i

2/2,q��D/2d�i =
1

D + 2

�D+3

�D+2
�2K�q���D+3�/2.

�A3�

FIG. 8. Conceptual figure of kinetic energy distribution when
the cluster consists of a single species of particle and kinetic energy
is distributed among all particles equally. Each bar shows the dis-
tribution of the kinetic energy of the corresponding particle into its
rotational energy ��

R �black region�, vibrational energy ��
V �white

region�, and translational energy ��
G �mesh region�.

NIIYAMA et al. PHYSICAL REVIEW E 79, 051101 �2009�

051101-14



APPENDIX B

We consider the integration

A =� �	R�q� − �
i=7

9

ai�i
2/2 − �

i�7,8,9

M+3

�i
2/2
A�q�dqd� ,

�B1�

where A�q� and R�q� are arbitrary functions of coordinate
variables q.

First, we take new momentum variables: �k�
=�ak /2R�q��k�k=7,8 ,9�, �k�=�k /�2R�q� �k=1,2 , . . . ,M
+3;k�7,8 ,9�, then the above step function takes the form
��R�q�−��i�

2 /2�. Thus, we can integrate the equation over
�� and obtain

A = �a7a8a9�−1/2�M+3� A�q��2R�q���M+3�/2dq , �B2�

where �M is the volume of a M-dimensional unit super
sphere. After n7, n8, and n9 times differentiation of the equa-
tion with respect to a7, a8, and a9, respectively, gives

�n7+n8+n9

�a7
n7 � a8

n8 � a9
n9

A = �
i=7

9

�− 1�ni�ni − 1 + 1/2� ! �M+3� A�q�

	�2R�q���M+3�/2dq . �B3�

Here we use the relation, �− 1
2 ��− 1

2 −1�¯ �− 1
2 −ni+1�

= �−1�ni�ni−1+1 /2�!.
On the other hand, for Eq. �B1� the transformation �i�

=�i /�2R�q�− �a7�7
2+a8�8

2+a9�9
2� �i=1, . . . ,M +3; i�7,8 ,9�

can be decomposed into a step function depending only on
the momentum variables �i� and a part depending on the
other momenta �7, �8, and �9 and coordinate variables q.
Therefore, we can integrate over �i� and obtain

A = �M� A�q��2	R�q� − �
i=7

9

ai�i
2/2
�M/2

d�7d�8d�9dq .

�B4�

Similarly as above, n7, n8, and n9 times differentiation of the
equation with respect to a7, a8, and a9, respectively, gives

�n7+n8+n9

�a7
n7 � a8

n8 � a9
n9

A =
�M/2�!

�n7 + n8 + n9�!
�M� A�q�

	�2	R�q� − �
i=7

9
ai�i

2

2

�M/2−n7−n8−n9

	�
i=7

9

�− 1�ni�i
2nid�idq . �B5�

Now substituting a7=a8=a9=1 and M /2−n1−n2−n3
=M� /2 into Eqs. �B3� and �B5� gives

� A�q��2	R�q� − �
i=7

9

�i
2/2
�M�/2

�
i=7

9

�i
2nid�idq

= D�n7,n8,n9�� �2�R��q���M�+3�/2+nA�q�dq , �B6�

where n7+n8+n9=n and

D�n7,n8,n9� = �
k=7

9

�nk − 1 + 1/2� !
�M�+2n+3

�M�+2n

�M�/2�!
�M�/2 + n�!

.

�B7�

If we consider A�q�=�i=7
9 �i�q�ni /�I�q�, substitute this into

Eq. �B6� and divide the equation by
��2R�q���M�+3�/2dq /��I�q��, then the right-hand side integral
becomes the phase space average: ��i=7

9 �i
ni�2R�q��n�. Finally,

let R�q�=E−V�q� and M�=3N−11, then we obtain the rela-
tion

� �
i=7

9

�i
ni�i

2ni�2�E − V�q� − ��
2/2���3N−11�/2d��dq/��I�q��

� �2E − V�q���3N−8�/2dq/��I�q��

= D�n7,n8,n9���
i=7

9

�i
ni�2�E − V�q���n� , �B8�

where D�n7 ,n8 ,n9�=�k=7
9 �nk−1+1 /2� !

�3N−8+2n

�3N−11+2n

��3N−11�/2�!
��3N−11�/2+n�! .
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